
Programming Fundamentals Midterm ECE244, Fall 2022

Duration: 2 hours, Examiner: D. Yuan, SK Rahman, S. Bhadra
Examination Aids: This is an open book exam.

If any of the questions appear unclear or ambiguous to you, then make any assumptions you
need, state them and answer the question that way. If you believe there is an error, state what
the error is, fix it, and respond as if fixed.

Be brief and specific. Clear, concise answers will be given higher marks than vague, wordy
answers. Marks will be deducted for incorrect statements.

You will receive 20% of the marks of each (sub) question if you leave the answer blank.
There are 18 total numbered pages, 10 Questions.

Name: ___

Student Number: ___

Total Marks Marks Received

Question 1 8

Question 2 5

Question 3 5

Question 4 5

Question 5 12

Question 6 10

Question 7 10

Question 8 7

Question 9 8

Question 10 30

Total 100

Q1: [8 marks, 2 marks each] Multiple choice (with some free mark questions), no explanation
needed.

(1) How many bits are there in a Byte?
(a) 8
(b) 4
(c) 2
(d) 16
(e) None of the above

(a)

(2) What programming language do we learn in ECE244?
(a) Python
(b) Memba
(c) Ruby
(d) Loonie
(e) C++
(f) Java
(g) Rust
(h) Dust

E

(3) On a 32-bit machine, the size of a pointer variable has:
(a) 2 Bytes
(b) 4 Bytes
(c) 6 Bytes
(d) 8 Bytes
(e) 16 Bytes
(f) None of the above

B

(4) Consider the following C++ program. There are three statements in the main function: A,
B, and C. Which of these three statements will trigger compile-time errors?

class ECE244 {

private:

int num_student;

int num_TA;

int get_num_instructor();

public:

int num_instructor;

int get_num_student();

int get_num_TA();

};

int main() {

ECE244 year2022;

int num_student = year2022.num_student; // Statement A

int num_TA = year2022.get_num_TA(); // Statement B

int num_instructor = year2022.get_num_instructor(); // Statement C

return 0;

}

A, C

Q2 (5 marks): When you compile the following program, what happens? If there is an error,
explain what the error is (one sentence max).

#include <iostream>

using namespace std;

int main () {

hello(1);

return 0;

}

void hello(int i)

{

cout << “Hello!” << i << endl;

return;

}

Answer:

There will be a compilation error because hello() is called before it's

declared.

Q3 (5 marks): Consider the following C++ function:

void AvadaKedavra(int n) {

int size = n + 1;

int* q = NULL;

for (int i = 0; i < 3; ++i) {

q = new int [size];

}

}

If somewhere in your main function you call AvadaKedavra(1). Based on the memory layout
discussed during the lecture, answer this question: from the time this function starts to execute
to the time right before it returns, how many bytes are newly allocated on the stack and the
heap, respectively?

You may assume:
i. all variables are put in the main memory.
ii. an int takes 4 bytes
iii. we have a 32-bit machine

Marking scheme: if final answer is correct for stack but not (n, size, q), except for the
situation when they only writes down the final answer as 12B: -1
Heap the same: if explanation wrong even with the right final answer: -1

Answer:
Stack:
n: 4B
size: 4B
q: 4B
i: 4B
Total: 16B

Heap:

6 integers: 24B

Marking: 3 marks for Stack, 2 marks for Heap.

Q4 (5 marks): Consider the following program. Write down the output.

#include <iostream>

using namespace std;

void increment(int& a) {

a = a + 1;

}

void decrement(int a) {

a = a - 1;

}

void doubling(int* a) {

*a = (*a) * 2;

}

int main() {

int a = 3;

increment(a);

cout << a << endl;

decrement(a);

cout << a << endl;

doubling(&a);

cout << a << endl;

return 0;

}

Answer:
4
4
8

Marking: -2 for each mistake.

Q5 (12 marks, 2 marks each sub-question): Consider the following program.

#include<iostream>

#include<fstream>

using namespace std;

int main () {

int a;

ifstream inFile;

inFile.open ("input.txt");

if (inFile.fail()){

return 1;

}

while (1) {

inFile >> a;

if (inFile.fail()) {

cout << "failed.." << endl;

inFile.clear();

inFile.ignore(100, '\n');

continue;

}

cout << "a = " << a << endl;

break;

}

return 0;

}

Given the following contents of "input.txt", write the output.

(1) input.txt has:

1
2
3

Answer:
a = 1

(2) input.txt has

a32
b86
3

Answer:
failed..
failed..
a = 3

(3) input.txt has

a32
b86 3

Answer:
failed..
failed..
failed..
And it keeps repeating

Now you remove the infile.clear() from the code, so the program becomes:
#include<iostream>

#include<fstream>

using namespace std;

int main () {

int a;

ifstream inFile;

inFile.open ("input.txt");

if (inFile.fail()){

return 1;

}

while (1) {

inFile >> a;

if (inFile.fail()) {

cout << "failed.." << endl;

// inFile.clear(); COMMENTED OUT

inFile.ignore(100, '\n');

continue;

}

cout << "a = " << a << endl;

break;

}

return 0;

}

Answer each of the first 3 sub-questions again:

(4) input.txt has:

1
2
3

Answer:
a = 1

(5) input.txt has

a32
b86
3

Answer:
failed..
failed..

failed..
And it keeps repeating

(6) input.txt has

a32
b86 3

Answer:
failed..
failed..
failed..
And it keeps repeating

Marking: binary.

Q6 (10 marks): Pointer vs. Reference
Compared to C, passing by reference is introduced in C++. Both of the following two functions
can be used to swap the value of two integers:

void swap_by_p(int* a, int* b); // swap version.1

void swap_by_r(int& a, int& b); // swap version.2

a. [6 marks] Write the implementations for these two functions (no more than 4 lines of
code for each function)

void swap_by_p(int* a, int* b) {

}

void swap_by_r(int& a, int& b) {

}

Answer:
void swap_by_p(int* a, int* b) {

int temp = *a;
*a = *b;
*b = temp;

}

void swap_by_r(int& a, int& b) {
int temp = a;
a = b;
b = temp;

}

Marking: 3 marks for each function; 1 mark for each stmt.

b. [2 marks] If given two int variables x and y, write a function call that swaps the value of x
and y, using swap_by_p.

Answer: swap_by_p (&x, &y);

c. [2 marks] If given two int variables x and y, write a function call that swaps the value of x
and y, using swap_by_r.

Answer: swap_by_r (x, y);

Q7 (10 marks): Incremental compilation
Ellie writes a program to make a simple database for ECE students who like drinking soy milk
from 2T2 to 2T6. She designs two classes: student and ECE, and puts them into different files
below. The main function is in the main.cpp.

a. [2 marks] Ellie tries to compile this program with g++. What's the Unix (i.e., terminal)
command that compiles the entire program using one command, which generates an
executable called small_database.exe?

g++ ECE.cpp student.cpp main.cpp -o small_database.exe

b. [2 marks] However, it fails to compile. Can you point out the compile-time error and fix
this error for her?

No header guard in student.h

c. [4 marks] With your help, Ellie has fixed the compile-time error. Now, Ellie wants to use
separate compilation learned from ECE244 to compile her project. Write down all the
Unix commands necessary to separately compile the above files and generate an
executable small_database.exe.

g++ -c student.cpp -o student.o

g++ -c ECE.cpp -o ECE.o

g++ -c main.cpp -o main.o

g++ student.o ECE.o main.o -o small_database.exe

d. [2 marks] Ellie then changes some code in ECE.cpp. Write down the Unix commands
necessary to regenerate the executable by compiling the smallest number of files
needed. Assume the generated executable is called small_database.exe.

g++ -c ECE.cpp -o ECE.o

g++ student.o ECE.o main.o -o small_database.exe

Q8 (7 marks) Operator Overloading

Vector is widely used in the engineering and science world. Suppose we create a class called
vector_2d. It can be used to represent a 2D vector, with x and y as its values. The partial code of this
vector is shown below.

class vector_2d {

private:

double x;

double y;

public:

vector_2d() {

x = 0;

y = 0;

}

vector_2d(double x_, double y_) {

x = x_;

y = y_;

}

double get_x() const {

return x;

}

double get_y() const {

return y;

}

// Add overloaded operator+= here

}

Implement operator+= for vector_2d, as a member function. If a = <x1, y1> and b = <x2, y2>,
after a += b, a becomes <x1 + x2, y1 + y2> whereas b is unchanged. Write no more than 5 lines
of code.

Answer:

vector_2d& vector_2d::operator+=(const vector_2d& rhs) {

x += rhs.x; // 1 mark

y += rhs.y; // 1 mark

return *this; // 1 mark

}

NOTE: the return type cannot be void, because we need to support chained +=.

Example: a += b += 2;

which is equivalent to:

b += 2;

a += b;

Marking:

● Correct return type (vector_2d&): 2 marks

● const: 1 mark

● Pass by reference: 1 mark

● 1 mark for each statements in the function body

Q9 (8 marks).Write down the standard output of the following program. Remember to write two
“Check Point”, since partial marks are given based on these “stop points”. You might find it
helpful to write down the memory layout.

#include <iostream>

using namespace std;

int i[5] = {0, 2, 4, 6, 8};

int* p;

void foo() {

cout << *p << endl;

++(*p);

++p;

}

void bar() {

for (int i = 0; i < 3; ++i) {

foo();

}

}

int main() {

p = i;

bar();

cout << "Check Point 1" << endl;

p = i;

foo();

cout << "Check Point 2" << endl;

return 0;

}

0

2

4

Check point 1

1

Check point 2

Marking:

-2 for each mistake (including value and/or order)

Q10 (30 marks). Programming
A Vtuber is an online entertainer who posts videos on Vtube. A Vtuber will have followers on Vtube.
As a programmer from Vtube, you are asked to implement a class for Vtuber. The class definition
and description are described below.

#include <string>

using namespace std;

class Follower {

private:

string name;

int age;

public:

Follower(const string& _name, int _age) {

name = name_;

age = age_;

}

string get_name() const {

return name;

}

int get_age() const {

return age;

}

};

class Vtuber {

private:

// Vtuber Name

string name;

// Follower array with a variable size, each element should be a dynamically

// allocated object of class Follower.

Follower** followers;

// The size of follower array.

int follower_max;

// Number of followers

int follower_num;

public:

Vtuber(const string& _name);

~Vtuber();

void insert_follower(const string& follower_name, int follower_age);

void remove_follower(const string& follower_name);

};

Specifically, Vtuber's followers member variable is an array of pointers, each pointer pointing to a
Follower object. The following graph illustrates it.

a. [6 marks] Implement the constructor for Vtuber. Vtuber name should be initialized by
_name, and follower_max should be initialized to 2. In addition, you should allocate an array
called followers using new, with an initial size of 2 (the value of follower_max). Every
element in this array should be a pointer to an object of class Follower and initialize all these
pointers to NULL.

Vtuber::Vtuber (const string& _name) {

}

Answer:

Vtuber::Vtuber (const string& _name) {

name = _name;

follower_max = 2;

follower_num = 0;

followers = new Follower*[follower_max];

for (int i = 0; i < follower_max; i++) {

followers[i] = NULL;

}

}

Marking:

● 2 marks for the correct allocation of followers

● 3 marks for initializing followers to NULL

● 1 mark for others

b. Every Vtuber in Vtube can get new followers or lose their current followers. This is
implemented by two methods: insert_follower and remove_follower. Now you are
asked to implement these two methods:

i. [10 marks] For insert_follower, a follower name and follower age are given. You
need to create a dynamically allocated object of Follower and insert it into the
followers array (in the first available location), using new operator. If the array is
full, you should double follower_max, allocate a new follower array, and move all the
data into this new array, and insert the new follower. Write the code below.

void Vtuber::insert_follower(const string& follower_name,

int follower_age) {

}

Answer:

void Vtuber::insert_follower(const string& follower_name,

int follower_age) {

follower_num++;

for (int i = 0; i < follower_max; i++) {

if (followers[i] == NULL) {

followers[i] = new Follower (follower_name, follower_age);

return;

}

}

Follower** new_followers = new Follower*[2*follower_max];

for (int i = 0; i < follower_max; i++) {

new_followers[i] = followers[i];

new_followers[i + follower_max] = NULL;

}

new_followers[follower_max] =

new Follower (follower_name, follower_age);

delete [] followers;

followers = new_followers;

follower_max *= 2;

return;

}

Marking:

● 3 marks on correct insertion without array expansion

○ 1 mark for correct allocation

○ 1 mark on correct looping

○ 1 mark on if condition checking

● 7 marks on correct insertion with array expansion (multiple ways to

do it)

○ 2 marks on initializing newly allocated members to NULL

○ 2 mark on copying

○ 1 mark on allocation

○ 2 marks on correct deleting followers (-1 if not using [])

● Any other mistakes: -1 each.

ii. [8 marks] For remove_follower, a follower name is given. If there is any follower in
the array matching the name, you should remove it and free its memory using
delete. You can assume the follower names are all unique.

Note: Your code should not have any memory leaks!

void Vtuber::remove_follower(const string& follower_name) {

}

Answer:

void Vtuber::remove_follower(const string& follower_name) {

for (int i = 0; i < follower_max; i++) {

if (followers[i] == NULL) // 3 marks on skipping NULL members

continue;

if (followers[i]->get_name() == follower_name) { // 1 mark

follower_num--; // 1 mark

delete followers[i]; // 2 mark

followers[i] = NULL; // 1 mark

break;

}

}

return;

}

Marking:

● see comment

c. [6 marks] Implement the destructor for the Vtuber class. You should free all the dynamically
allocated objects using delete. Remember to be consistent with your previous
implementation, as the entire program should not trigger any segmentation fault.

Vtuber::~Vtuber() {

}

Answer:

Vtuber::~Vtuber() {

for (int i = 0; i < follower_max; i++) {

delete followers[i]; // delete NULL is safe;

}

delete [] followers;

}

Marking:

● 3 marks for delete [] followers
○ -2 if not using []

● 3 marks for deleting each follower[i]

